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ABSTRACT 

A fundamental problem in mine warfare defense is to deploy 

mine countermeasure resources and to route supplies so that 

shipping losses are minimized.  The shipping losses at a port 

are a function of the mining attack, the quantity and duration 

of countermeasure efforts, and the amount shipped from the port. 

Models and solution algorithms are developed in this paper to 

optimally apportion scarce countermeasure resources when the 

quantity of supplies shipped out of each port is not subject to 

control and for the case when one can control both flow routing 

and countermeasures deployment.  When the shipping schedule is 

fixed, the models are special cases of minimum cost network flow 

problems.  For the more general problem, an enumeration algorithm 

is developed and computational results presented. 



I. INTRODUCTION 

The problem considered here is to provide the owner or 

"defender" of a logistics system under mining attack with a 

quantitative basis for allocating the helicopters and support 

equipment that make up his primary mine countermeasure (MCM) 

resources.  The logistics system consists of inland supply points 

that provide goods for transport over an inland supply system to 

seaports from which the goods are shipped.  The ports in this 

system are the elements subject to mining attack.  A diagram of 

the system is shown in Figure 1.  All of the analysis presented 

here can be easily extended to the converse system where goods 

are shipped into seaports and then distributed to inland demand 

points via an inland transportation system. 

In their broadest scope, the defender's responsibilities 

are to use his MCM and route his logistic traffic so that critical 

demands are met and losses are not extreme.  The question of 

what actually constitutes optimal MCM deployment is a difficult 

one to answer both philosophically and computationally. We have 

chosen to use total expected shipping losses as the measure of 

effectiveness for MCM deployment.  Martin and Ratliff [15] have 

shown that most of the concepts presented in this paper can be 

readily extended to similar problems where the maximum probability 

of lost shipping is the measure of effectiveness of an MCM deploy- 

ment . 

II. MODELING CONSIDERATIONS 

The following assumptions are made to ease modeling the 

problem: 

• We consider our planning horizon to be made 

up of H time periods. 

• We assume that a mining attack has been 

carried out against our ports at some time 

before the beginning of our planning horizon, 

and that we can prevent further mining attack 

for at least the duration of the planning 

horizon. 
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Figure 1:  Logistics System Diagram 



• We also assume that, given the amounts 

of MCMs assigned to port i in periods one 

through t, we have enough information to 

estimate a "survival factor" for port i 

during period t + 1.  This survival factor 

can be interpreted as that fraction of 

goods sent out of port i in period t + 1 

that would survive to the extent that the 

goods can continue on to their destination. 

• It is assumed that each supply point has 

a fixed amount of goods that must be shipped 

out of the ports during the planning horizon. 

• It is also assumed that the primary restric- 

tions on the inland transportation system are 

the shipping times along each transportation 

link and the capacity of each transportation 

link, where these capacities can be expressed 

in tons of goods without regard to the type of 

of goods being transported. 

These assumptions allow us to retain most of the realism of the 

actual system while still being able to model the inland trans- 

portation system as a single commodity flow problem on a time- 

expanded network (see Ford and Fulkerson [8] p. 142). 

Given all of these assumptions, the problem is then how to 

route the goods and deploy the MCMs so that the specified amount 

of goods from each supply point will be sent out during the 

planning horizon with the minimum possible losses.  The problem 

can be stated equivalently as maximizing the amount of goods 

successfully transiting the ports during the planning horizon, 

given that a specified amount is sent from each supply point. 

Three versions of this problem are considered: 

1. How to optimally route goods when the MCM deployment 

is already specified (fixed deployment problem). 

2. How to optimally deploy MCMs when the routing of 

goods is already specified (fixed routing problem). 



3.  How to optimally route goods and deploy MCM when 

neither is prespecified (general problem). 

In addition to providing insight into the general problem, 

the fixed deployment and fixed routing problems are useful in 

their own right.  In many areas, there is now no attempt to 

coordinate the routing and deployment either because of other 

considerations that force certain routing or deployments, or 

simply because the two problems are the responsibility of two 

different organizations. 

III.  FIXED DEPLOYMENT PROBLEM 

The fixed deployment problem can be modeled as a network 

flow problem by creating a node p., for each port i and time 

period k for i = 1,2,...P and k = 1,2,...H, and a node s.  for 

each supply point j and time period t for j = 1,2,...S and 

t = 1,2,...H.  For each i = 1,2,...P, an arc (p-w P; V+T) i-s 

constructed from p., to p. , _ for k = 1,2,...H-1 with capacity 
IK      1, K+JL 

equal to the amount that can be carried over at port i from 

period k to period k + 1.  Similarily, for each j = 1,2,...S, an 

arc (s.,, s. . ,,) is constructed from s., to s. ,.. for 
jt  J,t+1 jt    j,t+1 

t = 1,2,...H-1 with capacity equal to the amount that can be 

carried over at supply point i from period t to t + 1.  For any 

two nodes s., and P-i.» an arc (s.,  P-T,) is constructed from 

s.. to p., if goods shipped from supply point j at time t were 
j t      IK 

to arrive at port i at time k.  Transportation links between two 

supply points or two demand points are constructed the same way. 

Transshipment points, when they exist, can be modeled the same 

as the ports and supply points. 

Finally, a super source node V and a super sink node V 

are constructed.  Arcs (V, s.,) are constructed from V to 

s., for j = 1,2,...S having capacity equal to the total amount 

that is to be shipped from supply point j.  Arcs (Pilc/ V) are 

constructed from p., to V for i = 1,2,...P and k = 1,2,...H 



having capacity equal to the capacity of port i in period k. 

An example network for a problem with two supply points, 

two ports, and a planning horizon of three periods is shown in 

Figure.2.  In this example, it takes one period to get from supply 

point 1 to port 1, two periods to get from supply point 1 to port 2, 

and one period to get from supply point 2 to either port 1 or port 2 

It takes one period to get from port 1 to port 2 or from port 2 to 

port 1. 

If ait is the survival factor for port i in period t, the 

fixed deployment problem is to find a network flow that maximizes 

S. . X)  , ^^(P.;^' V), where f(p.., V) is the flow on the 
i=l   t=l  1X-  1X- it 

arc (p.., V) . xt  is easily shown that the following procedures 

solve this problem: 

Step (0):  Remove all arcs of the form (Pit> V) from 

the network. 

Step (1):  Among all arcs of the form (Pit« V) i = 
1,2,...P and t = 1,2,...H not currently in 

the network, find the one with the largest 

survival factor and reinsert it into the 

network.  When none exists, the procedure 

is terminated and the network flow found 

in step (2) is optimal. 

Step (2):  Maximize the flow from V to V in the current 

network. 

Step (3):  set a lower bound of f(p.,, V) on arcs of 

the form (pit,V), where f(Pit» V) is the 

maximum flow found in step (2), and return 

to step (1). 

Each time the maximum flow problem is solved in step (2), 

the previous maximum flow can be used as a starting flow.  The 

maximum flow problem can be solved very efficiently using the 

algorithm of Ford and Fulkerson [8]. 
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IV.  FIXED ROUTING PROBLEM 

The fixed routing problem is considered under two different 

assumptions concerning MCM deployment.  In the first case, we 

assume that the MCMs are assigned to ports at the beginning of 

the planning horizon and remain at their assigned ports for the 

duration of the planning horizon. 

For i = 1,2,...m and t = 1,2,...H, let a  (q. ) represent the 

survival factor for port i during time period t when q. units of 

MCM are assigned to port i, and let c.  represent the tonnage 

scheduled to leave port i during period t.  The fixed routing 

problem, to maximize the amount of goods successfully transiting 

the ports, can then be formulated as 

Maximize £i=i £t=i ait(qi)cit 
subject to   J ._ q. i Q (1) 

0 < q. <,  q. and integer for i = 1,2,...mf 

where Q is the total number of MCMs available and q. is the maximum 

number of MCMs that can work together effectively at port i.  Since 

a port's survival factor is, by definition, the portion of flow 

that successfully transits the port, it will always be the case that 

0 ^ a.^(q.) s 1 for i = 1,2,...m and t = 1,2,...H. 
it  l 

Under the assumption that all c  (•) for i - l,2,...m and 
it 

t = 1,2,...H are concave functions, problem (1) can be solved 

very efficiently.  This assumption is realistic in many situations 

since it still allows the survival factors for a port to increase or 

decrease from period to period, an important consideration in 

modeling the effect of delayed activation mines. 



By defining i. (q.) = £*=1 a.^qjc^ 

problem (1) becomes 

Maximize >J ■ -, a- (<2- ) 
1=1  1^1 

subject to 2J. _  q. ^ Q 

0 ^ q. ^ q. and integer for i = l,2,...m 

Since a  (•) for i = l,2,...m and t = 1,2,...H are concave func- 

tions, all a. (•) for i = 1,2,...in are also concave functions. 

It is easily shown that an optimal solution to (2) is obtained 

by sequentially assigning each unit of MCM where it will yield the 

greatest increase in the objective function.  Hence, this version of 

the fixed routing problem can be solved using a very simple rule. 

Now consider the fixed routing problem where we allow MCMs 

to be moved from port to port but only between periods.  For example, 

when the ports are reasonably close together, we can use the MCMs 

during the day and move them from port to port at night without 

losing any of their effectiveness.  For i = l,2,...m and t = 1,2,...H, 

let a. (zl,        ^-v^ represent the survival factor for port i, where 

q.  is the number of MCMs assigned to port i in period k.  Implicit 
1JC 

in this definition of the survival factors is the assumption that 

the effect of using MCMs is independent of the period.  This 

appears to be a reasonable assumption in many mine-hunting opera- 

tions.  The fixed routing problem under these assumptions can be 

formulated as 

Maximize     Y) . .  V  _ a..(Y]1 ~q.,)c_ 
*-' i=l ^t=l  it z-"k=0^lik  it 

subject to   E -=i 3-1 * Q*- 
for t = 1*2/--»H (3) 

0 < q_ <,  q>jL and integer for it   it 
i = 1,2,...m and t = 1,2,...H, 

8 



where c  is again the tonnage shipped out of port i during period 

t, Q  is the number of MCMs available during period tf q  is the 

maximum number of MCMs which can work together efficiently at port i 

during period t, and q.  is defined to be zero for i = l,2,...m. 

When we again make the assumption that all a. (*) are concave 

functions for i = l,2,...m and t = 1,2,...H problem (3) can be 

solved very efficiently as a minimum cost network flow problem.  To 

construct the network first create nodes n  for t = 1,2,...H and 

p.  for i = l,2,...m and t = 1,2,...H.  For t = 1,2,...H, construct 

an arc from n, to p.L with capacity q_ and cost zero for each t    it ^it 
i = l,2,...m.  For t = 1,2,...H-1 and i = l,2,...m, construct an 

arc from p..to p.    with capacity ]P    q., and cost 
it      1, tTj. K.— 1   1KL 

-ait(f(pit,p^t+1))c.t/ where f(P^P^t+1> is the flow in 

(P-x_#P- , -, ) •  Finally, construct a source node S with arcs from ^lt ^»t+l J 

S to n having capacities Q and cost 0 for t = 1,2,...H, and a 

sink node T with arcs from p. „ to T with capacities TV ., q.^ and i,H c ^-'t=l ^it 
cost -a. (f(p  ,T)c  for i = l,2,...m.  Problem (3) is then 

lH    lH    iH 
equivalent to finding a minimum cost flow of value ]P*   Q  in this 

network.  Since the costs on arcs from p., to p. ^ , are convex 
it   ^ift+l 

functions, they can be handled as discussed by Ford and Fulkerson 

( [8], p. 155), and the problem can be solved using any of the very 

efficient minimum cost network flow algorithms.  An example net- 

work for a 2-port, 3-period problem is shown in Figure 3.  This 

network construction can be viewed as a special case of a similar 

construction corresponding to a production scheduling problem 

developed by Dorsey, Hodgson, and Ratliff [5]. 

V.  GENERAL PROBLEM 

We now consider a version of the problem where neither the 

supply, routing, nor MCM deployment has been predetermined.  We 
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again assume that MCMs are assigned to ports and remain at the 

same ports for the duration of the planning horizon.  (The procedure 

discussed here readily extends to the case where MCMs can be moved 

from port to port between periods). 

The general problem can then be formulated as 

Maximize    V 
>m  v->H 

"Ei-lEt«l ait(qi)Git 

Em 

1=1  l 

0 <; q. <; q. and integer for i = l,2,...m 

cit «p- 

where a.. (•), q. , and Q are as defined for problem (1) and F 
it     l 

represents the flow constraints for the fixed deployment problem 

discussed in section III.  When all q. are fixed, problem (4) is 

the fixed deployment problem; when all c  are fixed, problem (4) 

is the fixed routing problem (1). 

Although the constraint set is linear and therefore convex, 

the objective function has neither the desirable property of con- 

cavity nor the more general property of quasiconcavity.  m general, 

to solve a nonconvex problem such as (4), one either enumerates 

all local optima or else develops a technique capable of rejecting 

and never evaluating some local optima.  Falk and Soland [7] and 

Falk [6] have developed techniques to solve nonconvex problems 

where the objective function has the form 0(x) = V\ ,0.(x.) — 
*—'1=1 1  1 

that is, a sum of functions of a single variable.  However, the 

objective function of (4) is the sum of functions of two variables. 

Recently, Bürdet [l] studied using a generalization of polar sets 

as a possible basis for a cutting plane algorithm for nonconvex 

problems.  However, a computational algorithm has yet to be developed. 

11 



For the special case where all the a  (•) are piecewise 

linear functions, problem (4) is a special case of a bilinear 

programming problem (that is, fixing all of the q. or all of the 

c.  results in a linear programming problem in the other variables). 

Konno L111 proposed a bilinear algorithm based on Ritter's cutting 

plane algorithm [4] for nonconvex quadratic problems.  Earlier, 

Mangasarian and Stone [14] and Mangasarian [13] proposed a total 

enumeration technique for bilinear problems.  In this paper, we pro- 

pose an implicit enumeration scheme to solve (4).  The concept of 

implicit enumeration (or branch and bound) has been applied to 

nonconvex quadratic problems by a number of authors, including 

Gilmore [10], Lawler [12], and Cabot and Francis [2].  The authors 

cannot find any reference to implicit enumeration algorithms 

developed specifically for a bilinear problem. 

The special structure of (4) permits us to use either of two 

enumeration techniques.  One possibility is to enumerate over possible 

values of the c  and solve the resulting fixed routing problems. 

To find all potential c  , one could permute the order in which flow 

is sent to the seaports.  As an example, for m = 10 and H = 1, one 

set of c,L values would be found by first maximizing the flow to it 
p , then to p , continuing in numerical order until the remaining 

flow is sent to Pin«  Another ordering would be p  first, then p , 

then p , etc.  This type of enumeration does not appear computa- 

tionally tractable since there are (mH)i possible permutations. 

A second possibility is to enumerate over possible values 

for the q. and solve the resulting fixed deployment problem (1). 

Now there are at most TT- -, q- values that would have to be considered. 
i=l ^i 

Since q. is usually a small number (5 or 6), this seems to be the 

better possibility. 

12 



An enumeration tree for the q\ is shown in Figure 4.  The 

fundamental notion of implicit enumeration is to sequentially commit 

variables along a branch until the best solution along the branch 

has been determined or until it can be established that there is no 

solution on the branch better than the best solution found so far. 

When one of these conditions is established, the branch is terminated 

and a new branch examined.  An excellent discussion of implicit enumera- 

tion methods is given in Garfinkel and Nemhauser L9]. 

With respect to problem (4), there are some very straight- 

forward ways to determine that a branch can be terminated.  Suppose 

that solutions are enumerated as shown in Figure 4 (first fix a 

value for q. then for q2, etc.).  Assume that q1#q2#...qr have 

been fixed at q^q^.-.q^ and that qr+1# ^+2'* * *qr+m haVe n0t 

yet been fixed .  Let V* be the value of the objective function 

for problem (4) corresponding to the best MCM deployment found so far. 

Obv iously, when jT).   q. > Q, the branch can be terminated. 

When U is an upper bound on the value of V for this branch, the 

branch can also be terminated when U, s V*.  We consider two different 
b 

ways of obtaining upper bounds. 

The first upper bounding technique is called the fixed deploy- 

ment bound.  We determine a value for total shipping output flow 

that is not less than the best flow that could be attained by adding 

any combination of free variables (variables not yet fixed) to the 

branch.  To accomplish this end, we compute an upper bound for the 

shipping flow that could safely leave the active ports (ports 

l,2,...r).  Then, in a separate computation, we apportion the 

remaining Q - E'-i 3- MCMs among the free ports and obtain an 

upper bound on the amount of shipping that can safely leave the free 

ports.  The sum of the active port flow and the free port flow form 

the fixed flow bound. 

To compute the active port output flow, we set the survival 

functions of the active ports at the values determined by q,,q0,...q -"•1 ^2    ^r 
and the survival functions of the free ports at the values determined 

13 
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by q. =0 for i = r+l,r+2, . . .m.  We then solve the fixed deployment 

problem of section III, and the total flow that safely leaves the 

active ports is noted.  To verify that this is an upper bound for 

active port output, we observe that since the survival functions 

of the free ports were set at their lower bound, no subsequent 

assignment of MCMs to the free ports could increase the amount of 

shipping flow to the active ports.  The survival factors at the 

present active ports will not change when additional ports are added 

to the branch.  Therefore, we have a valid upper bound for the shipping 

that safely leaves the active ports. 

For the network in section III, let f.  be the maximum flow 

from node V to node p.,.  The f.. values can be calculated before 
it       it 

starting the enumeration.  An upper bound on the output flow from 

the free ports can be obtained by solving problem (1) with 
A 

c.±   =  f., for i = l,2,...m and t = 1,2,...H and q. = q. for 
it   it 11 

i = l,2,...r.  This value plus the previously determined upper bound 

on active port output flow is a valid upper bound on V. 

A second upper bound on V can be obtained by setting q. = q. 

for i = l,2,...r and q. = q. for i = r+l,r+2,...m, then solving 

the fixed deployment problem of section III.  Both of these bounds 

were used in the enumeration scheme tested. 

An initial MCM deployment was generated by first setting 

q. = 0 for i = l,2,...m and solving the fixed deployment problem 

of section III.  Based on the port flows generated by this problem 

the MCM assignment (q.) was increased by one at the port yielding 

the largest increase in the objective function value for one 

additional unit of MCM.  The fixed deployment problem was then 

solved again, and the procedure repeated until all MCMs were 

assigned.  While this procedure does not always generate an optimal 

solution, for the problems tested it produced solutions within 

10 percent of the optimal value in all cases. 

Finally, given any specification of the q. for i = l,2,...m, 

solving the fixed deployment problem gives an optional set of 
i 

c_ for i = 1,2,...m and t = 1,2,...H.  Using this c. A,   set, solving 
it it 

15 



problem (1) produces a q. set that is as good and possibly better 

than the original set.  This process can be repeated until no 

further improvement is obtained, to produce a solution to problem 

(4), which is in a sense locally optimal.  This procedure is 

obviously finite, since repeating a set of q.'s would cause the 

procedure to stop.  The procedure was applied every time a complete 

specification of the q.'s occurred on a branch.  This was done to 

generate a "good" solution as quickly as possible in case computa- 

tion had to be terminated before an optimal solution had been 

established. 

VI.  COMPUTATIONAL RESULTS 

The enumeration algorithm was coded in PL/1 and tested on an 

IBM 370/165 computer.  The a. (•) used in the tests were of the form 

shown in Figure 5.  When the survival functions are of this form, 

the functions a.(*) of problem (2) are piecewise linear of the form 

shown in Figure 6.  When using the procedure suggested to solve 

problem (2) for a given c.  set, all except possibly one port would 

have q. = q., for some t = 1,2,...H.  This limits, to some extent, 
i    it 

the values of q. that must be considered in the enumeration.  This 
l 

fact was taken advantage of in the computational tests. 

All computational times are execution times (CPU times) 

on an IBM 370/165 computer.  The results presented below and in 

Figures 7 and 8 represent the average optimal solution times 

required to solve six problems for each data point.  Randomly 

generated supply networks consisting of a single source supplying 

the indicated number of seaports via five intermediate terminals 

were used to obtain these results: 

16 



5 6 7 4 4 4 

3 3 3 8 10 12 

6 6 6 6 6 6 

1.2 2. 7 8. 2 12. 1 10. 5 17.2 

8.1 29. 0 82. 0 24. 2 38. 5 62.6 

5.1 14. 4 48. 2 17. 8 24. 8 31.0 

Number of seaports 

Length of planning 
horizon 

Number of problems 

Minimum CPU time (sec.) 

Maximum CPU time (sec.) 

Average CPU time (sec.) 

Figure 7 indicates that excessive computational times may 

result when problems with more than seven ports are solved.  How- 

ever, Figure 8 indicates that increasing the length of the planning 

horizon does not affect computational time as severely as does 

increasing the number of ports.  This is about what one would expect 

since increasing the length of the planning horizon does not 

increase the size of the set being enumerated. 

17 
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Figure 6:  Form of a.(•) Used for Testing Enumeration 
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